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They are intended to stimulate thinking and encourage information exchange;
but they do not represent an approved position or policy of DCEC, and
should not be used as authoritative guidance for related planning and/or

further action.
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I. INTRODUCTION

A military telecommunications technical control facility is composed of
a group of technical control cperators who have the responsibility of re-
storing circuits. When one ;f the circuits goes down a technical controller
is assigned to it to ensure it is repaired and brought ub again. In a gecent
study [1], it was pointed out that a technical control facility can be
considered as a multiserver queueing system. Furthermore, one possible op-
erating rule for the facility had not previously been considered in the queue-
ing theory literature. It is the purpose of this paper to present a Sueueing
model for this rule.

The rule can be stated as follows: Independent of the number of circuits
requiring‘corrective action, one technical controller periodically leaves the
facility to perform other work. After he is finished he returns to the facil-
ity. Although the analysis of this paper assumes only me of the technical con-
trollers may leave, the extension to the situations when more‘than one may leave
follows via the same sort of analysis.

In queueing theory terminology, the customers are the circuits and the
servers are the technical controllers who are assigned to the facility. For
the particular operating rule considered above, we will be considering an s
server system where periodically one server leaves the facility to return

sometime in the future. In queueing theory literature, we are considering a
system where one of the servers may break down.

The analysis of queueing systems with breakdowns has been considered in the

past. Gaver [2] introduced and used the notion of completion times to analyze

the case where the number of servers equals one. Several other related papers




have appeared, e.g. Jaiswal [3]. Wewill not mention them éll, although one, re-
ference [4], should be noted as it was the first paper to consider the
mul tiserver case. In that paper, Metrary and Avi-Itzhak considered a system
where all the servers may go-éway or break down The operating rule under ,
consideration in this paper is sort of a hybrid of the rdﬁes édnsidered jn-
[2] and [4]. That is, only one of the s servers leaves the‘fécilit}"or breaks
down.

In this paper, we give an exact analysis of the case where the circuits
(customers) are assumed to break down . in accordance with a Poisson process
and the length of time required to fix the circuit has an exponential distribu-
tion. There are s (>1) technical controllers (servers) in the facility and
one of them periodically leaves the facility. We assume that the length of time he
leaves and stays, each has an exponential distribution. In section II we give
an exact analysis of this’queueing system. Some numerical examples are given

in section III,as well as several possible approximations. Fiha]ly, section

IV contains some concluding remarks.




IT. ANALYSIS

o In this section, we give a mathematical analysis of the queueing system

8 described in section I. There are s servers and periodically one of the

j'; servers leaves the system to return at some future-time. We assume that

customers arrive to the system in accordance with a Poisson process with
8% parameter A. The service time of an arriving customer has an exponential

1

distribution with mean u~'. For the server who periodically leaves the sys-

é L tem, we assume the ranédom variables representing length of time he remains in
L or out of the system have an exponential distribution with means a-] and 8']
respectively. A1l random variables are assumed to be mutually independent
and we assume the system has an infinite waiting room.
§ Let, for n=0,1,2,..., and i=0,1
3 P

o Pr{Q=n, Y=i}, (1)

! where Q is the steady state number of customers in the system and

0  if the server away from system
1 if the server in system.
If a customer is receiving service when the server decides to leave, the cus-

| tomer is returned to the head of the queue. Waiting customers are serviced

: on a first-come, first-served basis.

The steady state equations for Pn j are

(x+nu+e)Pnp = xPn_]’0+(n+1)uPn+]’0+aPn,] 3 n<s-2

(2)

'(A+(s-1)u+s)Pnp = APn_1’0+(s-1)uPn+]’0+uPn’1 3 n>s-1




e -

(A+nu+a)Pn’] ;\Pn_],]+(n+1)an+],]+sPn’0 3 n<s-1
(3)
(A+su+a)Pn,] = APn-],]+S“Pn+],1+BPn,O ; n>s :
where P_, o =Py 4 = 0. Let, for i=0,1 and |z|<],
B el
Pi(2) = nE’oPn’iz : ] (4)

Multiplying equations (2) and (3) by 2" and combining one gets

(-3224(8+x+(s-1)u) 2~ (5-1)u)Py (2)-azPy (2)
: (5)

= n
=u(1-z);§o(n+1-s)Pn’oz
and
2 s-1 n
(-2z"+(a+rtsp)z-su)P,(2)-BzP4(2) = u(1-2) X (n-s)P_ ,z". (6)
1 0 Wi n,l
These equations can be written in the following matrix equation:
A(z)P(z) = B(2) (7)
where
Pn(2)
P(z) = |0
P](Z)
u(1-2) T (n41-s)p, 2"
u(l-z n+l-s)P_ .z
n=0 e
B(z) =
s-1 n
u(1-z) X (n-s)P ;2
~ n=0 v
) Fao(z) -az
A(z) =
-z a](z)

with éo(z)=-A22+(B+A+(s-1)u)z-(s-l)u and a](z)=—A22+(a+A+Su)Z-Su.
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8
If det(A(z)) is the determinant of A(z) then the solution for Pi(z),
-t; i=0,1, is given by
: Sz-:] s-1
Foo n > n
= P (z) = u(1-2){ay(2)gln#1-s)P, o2 tazip(n-s)Py 12} ()
P : det(A(2))
L ond s-1 s-1 g
2 n > n
: S u(l-z){ao(z)nzo(n-s)Pn’]z +an=0(n+1-s)Pn,Oz } . (9)
: det(A(z))
Et where
, A det(A(z)) = ao(z)a](z)-asz2 2 (10)
4 Thus, the solution depends on Pn ; (i=0,1; n=0,1,2,...,s-2) and Ps-] ]
i These probabilities may be expressed in terms of P0 0 and PO]' Consider equa-
v s s
! tions (2) and (3), for n=0,1,2,...,5-2 we have
' Pn,o = Co(nPyg*Cy (n)Py, e (1)
and for n=0,1,2,...,s-1
& ' 3
Pn,] = DO(n)POO+D](n)P0] (12)
where
1 nuCO(n) = (A+B+(n-1)u)C0(n-1)-ACO(n-Z)-aDO(n-1)
{ (13)
. miCy(n) = (a+g+(n=1)u)C; (n-1)-1C; (n-2)-aD; (n-1)
and
nuDO(n) = (A+q+(n-1)u)DO(n-1)-ADO(n-Z)-BCO(n-l) 8
14

nuD](n) = (A+a+(n—1)u)D](n—l)-AD](n-Z)-BC](n-l)




with CO(0)=D](0)E1, C](0)=DO(O)EO and for i=0,]1 Ci(n)=Di(n)50 when n<0. This
shows that the solution to the problem rests on determining the two unknowns
P00 and PO]'

E One equation in these unknowns can be found by the normalizing condition;

® 1
that is, X & Pn 505 1. From equatiors (8) and (9), using L'Hospital's rule,
n=0 i=0
one gets (p=A/u)

s-1 7
o S5 ;
s-p-/(atB) = n=0{[(s-1-n)co\n)+(s-n)oo(n)]pop
) ,\ * [(5-1-n)C](n)+(S-n)D1(n)]Po)]}. ,
We need to generate another independent equation in P00 and PO] ;
() 2 .
' Let us consider the equation det(A(z))=0 by using Sturm sequences, [5]; 3
F

one can show there are exactly two roots of this equation in [0,1]. Obviously,
one of the roots is equal to one, and note that if s=1, the other is equal to
zero. Thus, there is exactly one root of det(A(z))=0 in [0,1); we denote it

¢ by zy. Returning to equatiors (8) or (9% the numerator of each of these

equations must vanish at zy- This gives us two more equations in PQp and PO]‘

1 A little algebra will show that they are equivalent, and so we have :
s-1 n :
Y 0= Pqp{ﬁgo[al(ZO)("+]'S)C0(n)'“20(s'")DO(")]ZO}

(16)

s-1 n
+ PqJ{nEB[(a1(zo)(n+1-s)C](n)-azo(s-n)D](n)]zo}.

From equations (15) and (16) we can now give an expression for Pgo @nd qu.
7

For i=0,1, let ¢-1

L B = [(s-]-n)Ci(n)+(s-n)Di(n)] (17)
n=0

e




and s-1 n - ; '
ny nElo[a](zo)(n+1-s)Ci(n)-azO(s-n)Di(n)]z0 (18)
then
: 5 (s-p-o/(at8))n, (19)
00
Yon-l -Y] no
and
, (s-p-a/(at8))n y
' LR s

Although no simple expression exists for the expected number of customers

\ in the system, E(Q), one may differentiate equations (8) and (9) to obtain
4
the desired result. For completeness, we include the resulting expression
2 S-]
" E(Q) = (w/oq){lon(atB-r+(s-1)u)-0;(a+8)] Z (n-s)P
B 1 i n,1 J
; s=1 s-1 (21) -§f
+ [Oo(a+8-)\+5u)-®](a+8)] .§ (n+1-s)Pn’0+Oo(a+B)§ n(n—s)Pn’] (
n=0 ¢ n=0 ;
) X {3
5 s-1 i
4 + 0g(a+e) ?n(nﬂ-s)Pn’O}
n=0
where
i 0p = B(A-su)+a(r-(s-1)u)
A 0y = (A=-B=(s=1)u) (a=A+su)+Br+ar+aB,
and the Fe i's are found from (11), (12), (19) and (20).




ITI. SOME NUMERICAL EXAMPLES AND APPROXIMATIONS

In this section we give some numerical examples of the results found
in section II, as well as discussing several possible approximations to
the system. Table I gives a comparison of the system for the same traffic

intensity, p=A/u(u=1), and two different values of s, (s=5 and s=10). We note

that as g+0 the system behaves as ans-1 server system.

TABLE I. EXPECTED NUMBER OF CUSTOMERS IN SYSTEM (E(Q))

| o/ (a+8) :
4 z
o 0 .25 5 .75 1.0 :
s=b 1.0010 1.0022 1.0037 1.0051 1.0068 ;
" s=10 2.0000 2.0000 2.0000 2.0000 2.0000 3
¥ b
) 3 1.5086 1.5160 1.5247 1.5338 1.5447
3.0005 3.0008 3.0012 3.0015 3.0020
| 4 2.0398 2.0651 2.0965 2.1305 2. 1739
4.0059 4.0089 4.0121 4.0154 4.0190 ;
§ 5 2.6304 2.6987 2.7881 2.8910 3.0330
f 5.0361 5.0501 5.0659 5.0821 5.1006 .
E 6 3.3540 3.5222 3.7577 4.0584 4.5283 T
6.1519 6.2007 6.2579 6.3189 6.3920 ‘
. 7 4.3816 4.8050 5.4721 6.5106 8.6650
7.5174 7.6685 7.8559 8.0707 8.3473
78 5.7302 6.7425 8.6775 134717 40.7593
9.0976 9.4881 10.0111 10.6802 11.6563

~

o
-
-




From this table one can see that the system with 5 servers is more
sensitive to one of the servers leaving than the system with 10 servers.
Of course, this was to be expected since when one server leaves in the five
server system, the total system capacity is reduced by 20%, whereas, in the
other case only by 10%.

Although a straightforward, standard analysis was présented in section 11
development of some simple approximations to the system that do
not require finding zq may be desirable. One approach may be to tend the de-
sired measure of performance (e.g., expected queue length, average waiting time)
for an s and s-1 server system, and then take the convex combination of these
measures of performance based on the proportion of time the system is operating
like an s server (g/(a+8)) and an s-1 server system («/(a+B)). This approach
is not very good, since the traffic intensity may be such that for an s-1
server system, the system blows up. For example, suppose s=5, a=1, 8=2, u=1,
and 1=4; since p=4, the measure of performance, say expected number in the
system, for a 4 server system would be infinite. Thus, takiné a convex com-
bination of this number and the case for s=5 would result in an infinite number
of customers in the system. Of course, this is wrong since p<s-a/(a+8), and
thus the Cesaro mean converges.

A more promising approximation is to treat the system as a non-integer
number of servers. That is, consider the system to be an M/M/s' system when
s'=s-a/(a*+g). The only problem with this approach is in computing the desired

measure of performance for a non-integer number of servers. From [7] one can

Con
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express most of the measurés of performance in terms of the Erlang Loss
Formula, E(s,p), where
i E(s,p) = . S
: J
: 5 p°/ :
J=0 g
Thus, the only problem is to determine Erlang's Loss Formula for a non-integer

number of servers. As suggested in [8] we use the following extrapolation

formula for this quantity, |

1 ' p S'-[S'] 3 1
E(s'sp) = E([s ]sp)[ IS']"‘]"‘DE([S'],Q)] ) (22) ‘

when [x] is the greatest integer less than or equal to x. Tables II and III |
! give a comparison of this approximation with the exact results. The results ‘
are presented for s=5 and s=10, and various values of o and 8. We note that

) for the case where a=0 or 8=0 the approximation is exact.

10




TABLE II. COMPARISON OF APPROXIMATION FOR E(Q) WITH s=5

- _
gLl .25 .5 75
APPROX 1.0015 1.0025 1.0041 i
‘2 ExacT 1
1.0022 1.0037 1.0051 i
B 1.5128 1.5193 1.5292 1
& 5 1.5160 1.5247 1.5338 . }
|
B 2.0565 2.0813 2.1181 g
b £ 2.0651 2.0965 2.1305 1
% 2.6811 2.7569 2.8649 |
E i 2.6987 2.7881 2.8910
| S
\ 3.4907 3.6984 3.0104
E ¢ 3.5022 3.7577 4.0584
4.7529 5. 3544 6.4231
¢ " 4.8050 5.4721 6.5106

TABLE III. COMPARISONS OF APPROXIMATION FOR E(Q) WITH s=10

! o/ (a+B )
/e el .25 - g6
-
APPROX 2.0000 2.0000 2.0000
2 ExACT
2.0000 2.0000 2.3000
E ! 3.0007 3.0010 3.0014
: -3 3.0008 3.0012 3.0015
i 4.0078 4.0105 4.0141
4.0089 4.0121 4.0154
| 5. 0464 5.0598 5.0774
:5 5.0501 5.0659 5.0821
f 6.1910 6.2414 6.3067
; 6.2007 6.2579 6.3189
. 7.6480 7.8185 8.0441
7.6685 3559 8.0707 |




Two points are immediately discernible from these tables. First,the approximation

always underestimates the exact results, and second, the approximation is

better for the larger numberCPf servers. In both cases, the approximation

is extremely good and seems to be worst, in a relative sense, when a=g.
Although this approximation is extremely good, the oniy real computational

problem in the exact analysis is in determining zo,the root of det(A(z))=0

inside of [0,1]. A numerical investigation of the relationship between P00

y)
and POu revealed a very interesting fact; that is,

BP aP (23)

ol

Qo

where = means approximately. Table IV gives some typical results that were

used in generating this observation

TABLE IV. NUMERICAL INVESTIGATION OF THE EQUATION 8Py, aPy (s=5)
/8 1/3 1 .3/
1 .091928 27582 | .18379  .18380 | .27561 .09187
P
99/$g1 .3333 .9999 2.9999
2 .03338 10017 | .06626  .06636 | .09872 .03292
p
QB/$QJ .3333 .9986 : 2.9992
3 .01125 .03380 | .02146  .02160 | .03056 .01020
g
QR/$0; 3329 19933 2.9957
3.9 .00326 .00981 | .00518  .00527 | .00534 .0017877
p
q8/$q; 3322 9825 2.9878
12




This relationship suggests another possible approximation: that is, to
use equations (15) and (23) to solve for Pop and POJ directly without having
to find z;- Once PQO and PQL'are found, Pn,i(n=]’2"" and i=0,1) can be
determined recursively, or expected value measures of performance can be ob-
tained as was done in the case of E(Q) in section II. We'note that this-
approximation has two advantages over the other one: it is more accurate,and it
can be used to generate the complete probability distribution if required.
The - greater accuracy is shown in Table V. In that table, approximation
I is the one using the non-integer number of servers and approximation II, the
one just suggested.

TABLE V. COMPARISON QF TWO APPROXIMATIONS FOR E(Q) (s=5)

a/(at+8)

p/s .25 e .75
APPROX, I 1.0015 1.0025 1.0041
.2 APPROX. II 1.0021 1.0036 1.0050
EXACT 1.0022 1.0037 1.0051
1.5128 1.5193 1.5292
L5 1.5157 1.5243 1.5335
1.5160 1.5247 1.5338
2.0565 2.0813 2.1181
.4 2.0644 2.0956 2.1295
2.0651 2.0965 2..1305
2.63811 2.7549 2.8649
5 2.6973 2.7860 2.8890
2.6987 2.7881 2.8910
3.4907 3.6944 4.0104
.6 3.5198 3.7540 4.0504
3.5222 3.7577 4.0548
4.7529 5.3544 6.4231
7 4.8015 5.4664 6.5050
4.8050 5.4721 6.5106

13
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IV. CONCLUSIONS

In this paper we have presented a queueing model of one possible operating
rule of a techncial control “facility. The numerical examples considered in
section III pointed out serveral interesting facts. First, the effect of one
of the servers leaving the facility for periods of time is more pronounéed
when the number of servers is small. Second, the two unknowns, PO,O and
Po’],are approximately related as BPO,OEPO,]“‘ This fact can be used to give
one possible approximation to the system. Another possible approximation,
investigated in section III, is to consider an equivalent system when there
is a non-integer number of servers, s' with s'= -a/(a+B).

It is hoped that the exact, as well as approximate, analysis of a possible
operating rule for a technical control facility may provide some insights into
the operation of such a facility as well as being used in performing some

trade-of f studies for the system.

14
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